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Quantised gauge theory, dimensional reduction and 
OSp(4 +N/2) supersymmetry 

R Delbourgo, P D Jarvis and G Thompson 
Department of Physics, University of Tasmania, Hobart, Australia, 7005 

Received 31 March 1982 

Abstract. The Klein-Kaluza version of the combined Einstein-Yang-Mills system is based 
on a larger-dimension manifold, admitting an O(4 + N )  symmetry, which undergoes 
compactification. The theory provides a unified treatment of all gauge fields and its action 
consists of a single invariant Lagrangian and, separately, a single gauge-fixing term. We 
show that both Lagrangians can be combined within a larger framework, admitting an 
OSp(4 + N / 2 )  supersymmetry, which undergoes appropriate dimensional reduction; here 
the extra graded dimensions are associated with the fictitious fields needed for consistent 
quantisation and unitarity. 

1. Introduction 

We are becoming accustomed to viewing four-dimensional general relativistic gauge 
theories as appropriate compactified versions of higher-dimensional theories (Crem- 
mer 1981). This idea possesses an old pedigree (Kaluza 1921, Klein 1926, DeWitt 
1965, Cho 1975) but it has remained dormant a while. Its recent revival is largely 
due to the impetus received from developments in supergravity (Van Nieuwenhuizen 
1981). 

A quantised gauge theory must of course include the fictitious (ghost) fields as 
well as the original gauge field,. In a recent publication, Hosoya et a1 (1981) have 
demonstrated that the ghost Lagrangian, like the starting classical Lagrangian, can be 
incorporated very naturally within the (4 + N)-dimensional Kaluza-Klein framework. 
Specifically they show that the full Lagrangian 

2 = ~ - ~ J q  $ + K - * S ( ~ ~ G ; J I & G ’ ” )  (1) 
is nothing else but the usual gauge plus fictitious Lagrangians when decomposed into 
more familiar components of the generalised metric 8, associated with the compactified 
(4+N)-dimensional manifold. In (1) the indices $, t run from 1 to 4+N, 2 is the 
full curvature, G stands for the dual set of ghost fields and S represents the ordinary 
Becchi-Rouet-Stora variation of the collection, as spelt out in their paper. 

In parallel with these developments has come the realisation that gauge fields and 
ghost fields can be accommodated within a larger framework which includes space-time 
plus two (scalar) graded dimensions. The basic scheme admits an OSp(4/2) supersym- 
metry and it leads very naturally to an extended set of ~~s ’ inva r i ances  for a wide class 
of Lagrangians. This happens both for Yang-Mills theory (Delbourgo and Jarvis 
1982, Bonora and Tonin 1981) and, in a local version, for gravity too (Delbourgo et 
a1 1982a, b, Pasti and Tonin 1982). 
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In this paper we wish to combine both ideas and examine the consequences of 
assuming a (4 + N + 2)-dimensional manifold, admitting an OSp(4 + N/2) symmetry, 
so that an extended version of (1) emerges in which the ghost fields are treated 
symmetrically as part of a multiplet structure which includes the gravitational and 
internal gauge fields. We shall show that such a generalisation can be successfully 
accomplished and demonstrate how it leads to an extended set of BRS invariances for 
the combined system, with corresponding extended gauge identities. From our view- 
point the quantised, generally covariant gauge theory is regarded as a dimensionally 
reduced version of a 4 + N + 2 space-time theory, where the last two dimensions are 
graded; we believe that the result is a new and useful application of supersymmetry 
to the real world. 

2. Extended BRS variations 

For all its conceptual simplicity, the algebraic complexity of the formalism demands 
that we introduce a notation that is easily intelligible. We shall let X M  = ( x w ,  tW, 8 " )  
denote the coordinates of the full manifold; x" refers to ordinary space-time, 6- to 
the internal space and 8" to the graded dimensions. Thus p runs from 0 to 3, m 
from 1 to N and m = 1,2 .  Tangent space indices are denoted by early letters of the 
alphabet, A = (a, a, a ) .  Some formulae require sign factors [ M N ] ,  [ A B ]  which are 
+1  except for [mn]  = -1, [ab]  = -1, and so on. 

The basic idea is to introduce a generalised metric G transforming in the normal 
manner 

eSR (XO)[RNl 
MN axM axN 

ax," ax," G ( X ) = - -  

or better still the vielbein, 

E:(x) = (axM/ax,N)B,N(xO), GMN = EAEBT [NAI. (3) M N AB 

In line with earlier work we shall suppose that at the point X o  the metric or vielbein 
depends in a factorisable way upon x o  and to (just as in Kaluza-Klein theory) and 
that the off -diagonal graded components vanish. Specifically, at Xo,  we take 

In (4) e :  is the usual gravitational vierbein, while e: in (6 )  is the internal space 
vielbein or 'velocity field', satisfying s a d e z ( 5 ) e ; ( ( )  = g""([), and the Lie algebra 
commutation rule 

e:a,e; - e r a m e :  = feGCeZ, a,,,= ala[-. (7) 
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For further details see Hosoya et a1 (1981). The point about the special choice (4) 
is that it has vanishing curvature along the &directions. 

As in earlier work, we now perform a special 8-dependent transformation which 
guarantees flatness along the graded dimensions still, namely 

(8) t"' = 6; + e o " d  b o ,  T o )  + MB"'ho, T o ) ,  1 2  IA 
X &  = XO" + e7w;(XO)+TeoB (x0),  

e* = E ""emen e" = e:, 
and follow this by a supertranslation, 0" -* 6" + E " .  Comparing the result with a 
coordinate transformation 

XIA+XIA--&"mW;,  t--,t-- E " w m ,  +n e" -, e" + E ", 
followed by a special transformation ( 8 )  at the new point X, we are able to discover 
the extended BRS variations of the ghost fields w and auxiliary fields B.  These read 

Sw& = Enw""am; +&"BIA, SB@ = E n W n v a v B r ,  ( 9 a )  

SB* = EnwnyaJ3*+ Enwn"a,Bm. ( 9 b )  SO; = Enunvavw; +EnWnra,w; + E"B*, 

The set ( 9 a )  is easily recognised as the extended gravitational BRS transformations. 
On the other hand, the set (9b)  are the extended BRS variations for the internal gauge 
fields, but in disguise. We strip off this disguise by defining tangent space fields as 
followst: 

o",x, O = w G ( x ) C ( T ) ,  

B Y x ,  5 )  = B"(x )e  Z (5) - $w am (x 
( 9 c )  

(x ) e ;  (5)&e Z (5 ) .  
In terms of the new fields, 

1 nd c SWG = &,BO+ E n " ! - " a ~ ~  +TfdcaEnW U",  
( 9 4  

are more easily identified as the combined gravitational-internal transformations 
(Delbourgo and Jarvis 1982, Delbourgo et a1 1982b)$. We may also derive the 
extended transformations of the metric from the rule 

SB" = EnwnvavBa+$f~,aenw"'B~+l 12fdadfdcaEnw n d ~ ~ ~  

GMN(x, 5, E ) =  GMN(x, 5, O ) + E m a m G M N ( x ,  [,O)+. . . 
consistently with (9) .  In this way we derive 

,,IAv = E m ( g A Y a A W ; + g I A A a A w ~  -wkaAgIA"), 

s g - - =  Em(gPaam; +gmPam; -wPmaeg-"), 

and the off-diagonal variation (see ( 5 ) ) ,  which simplifies to 

SA; = E m ( a r u d m  +wAmaA\A;+A~aIAwhm +fdcawdmAt) ,  ( 9 f  1 
thereby completing the extended BRS set. 

i The origin of the terms in (9c) is not so mysterious when we realise that the full right group action is 
R exp(hT)(-=("'+A"eT +&4"h6e~ape;+ .  . .. Equation (9c) expresses the fact that the internal part of 
(8) is of this form, with AT-@~w","+$3;B"T" (cf Delbourgo and Jarvis 1982). 
j: It should be noted that in (9) both ghosts and the multiplier field B enter on an equal footing; this is to 
be compared with Hosoya et al's (1981) asymmetric treatment of the ghost w and that of the dual ghost 
and auxiliary field. 
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3. Actions 

When it comes to constructing BRS invariant actions we can take our cue from 
earlier research. One already knows (Cho 1975) that the full (4 +N)-dimensional 
curvature R breaks up into that for gravity, the Yang-Mills term F2,  plus a (constant) 
internal space contribution. It is just a matter of recasting this into superfield form, 
which is no problem. Thus 

Sgauge = ( VK2)-'  / dN+6X J75X2RMNGNM (10) 

precisely decomposes into its conventional parts. In (10) the measure is 

V =  JgdN[, I J Z  dN'6X = JG d4x J j  dN[ d28, 

and the X 2  factor is there to cancel out the 8 integration-it does not spoil the 
supertranslation invariance of the action. However a wide variety of Lorentz-covariant 
gauge-fixing Lagrangians is possible, includingt 

E : E h  5&", E:E,"S"~T,~, E%bYEabqbu, 

EZEiq apg-a, E Z E 3  Qdg,,,a, E,"%& abg..,a, (11) 

E,"E;T"'E,~, E:E;S Q C ~ m n ,  E ~ E ; ~ ~ ~ ~ , , , , , .  
All of these of course break the general and internal gauge covariance, as they must. 
Remembering the special forms (4) and the class of transformations (8) taking us 
from Xo to X, it turns out that 8-flatness always entails 

E: =E:  = E :  = 0 ,  E r  =ST, E: = e: (6). 
Hence, apart from constants, we are left with four possibilities for the action 

+ y ' - ' E r E f ; ~ ~ ~ q & ~  + l - lE~E~q"Pg , , , n  +l'-lE~E:e"bg,,,,,) (12) 

among the class of Lorentz-covariant gauges. It is possible to rescale the fields B and 
w so that y = y' and [ = l', leaving us with two gauge parameters: y specifying the 
gravitational gauge and 5 the internal space gauge. Again, up to an irrelevant constant, 
we can rewrite 

SRxing = V-' / dN+6X J _ G ( G ~ ~ ~ ~ , , ~ - ~  + Gm"g,,i-') (13) 

in its most elegant formS. It turns out that for y + 0 the Lagrangian (Nakanishi 1978) 
admits a larger choral symmetry (Nakanishi 1980) but we need not restrict ourselves 
to that particular value. 

It goes without saying that (13) possesses the extended BRS invariance under the 
set (9); the Lagrangian merely changes by a pure divergence under the BRS transforma- 
tions. To make contact with the traditional fields we evaluate G"" and G"' in terms 

t The reason why we take g,, rather than 6,. is because that is the proper form-invariant metric, in the 
same sense that qwp is the Lorentz-invariant metric. 
~ ( w m x w , ) - ~ E m n W d m W ~ j l n r ,  etc. 
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of the component gauge fields ( 5 )  using the transformation (8) and changing to the 
location s via 

6;; = 8- - emu: (x0, 6) -3e2[wn-a,w: (x0, 6) + B Y X ~ ,  [)I. 
The measure being a group invariant, we can determine (13 )  at x o  and the general 
internal location 6. The result is finallyt 

= d4x J q [ y - l q / L y ( g w A  aAB" + gUA a,,B '" + g K A  a,@ "aA@ + 2B '"B ") 

+ i-'(gw"[-A;aJ3" + a,w;aa,w"" +;eA;(w" x a,wm)=] 

+ B"B" x W m ) a ( W n  x On)= )n .  (14)  

I 
Generalis&ons of (13) and (14 )  are possible wherein the density is weighted by the 
factor ( J - G ) ~ ;  this will not disturb the extended BRS invariance. Also one could 
envisage classes of axial gauges which take us outside the Lorentz-invariant set. Our 
methods will adequately cover these cases too. We have no reason to suppose that 
the extended gauge identities arising from the variations (9) will not be satisfied, 
because a regularisation procedure (4 dimensions + 21 dimensions) exists that always 
respects them. 

In conclusion, we have shown that a generally covariant quantised gauge theory- 
including the fictitious fields-can be considerably viewed as a dimensionally reduced 
theory in 4 + N + 2  dimensions in the Klein-Kaluza sense, where the last two 
dimensions are graded. It could well be that higher terms in normal mode expansions 
of the ( N  + 6)-dimensional theory will lead to several more massive excitations (Salam 
and Strathdee 1981) than originally conceived, namely those of the ghosts. 

Note added in proof. Ohkuwa, in a recent Osaka publication, arrives at our results by a different route. 
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t y = = 0 will be seen to yield the harmonic-Landau gauges; y = = 1 give instead the de Donder-Fermi 
gauge. Obviously there is no obligation to choose the gauge parameters equal. 


